Ndfeb hydrogen decrepitation.jpeg.

Jan 1, 1991 · Abstract. In this paper we describe and discuss the use of hydrogen in the processing ofNdFeB-type magnets. The roles of hydrogen in the hydrogen decrepitation (HD) and hydrogenation, disproportionation, desorption and recombination (HDDR) processes are considered together with the characteristics of the magnets produced by these routes.

Ndfeb hydrogen decrepitation.jpeg. Things To Know About Ndfeb hydrogen decrepitation.jpeg.

NdFeB permanent magnets have different life cycles, depending on the applications: from as short as 2–3 years in consumer electronics to 20–30 years in wind turbines. The size of the magnets ranges from less than 1 g in small consumer electronics to about 1 kg in electric vehicles (EVs) and hybrid and electric vehicles (HEVs), and can be …Hydrogen decrepitation as a highly efficient and excellent crushing method is widely used in the preparation of NdFeB magnets. ... Expand. 1. Save. The processing and characterisation of recycled NdFeB based magnets. S. Adrwish. Materials Science, Engineering. 2013; The scrap magnets were turned into a powder using the HD process. …High performance NdFeB permanent magnets are widely manufactured using the conventional powder metallurgy route involving distinct steps: alloy synthesis by strip casting, pulverization by hydrogen decrepitation and jet milling, shaping by compaction and sintering followed by annealing [32]. Every step of this manufacturing process has …In this paper it is demonstrated that hydrogen could play a vital role in this process. Fully dense sintered NdFeB-type magnets have been subjected to the hydrogen decrepitation (HD) process. Hydrogen decrepitation as a highly efficient and excellent crushing method is widely used in the preparation of NdFeB magnets. ... Expand. 1. Save. The processing and characterisation of recycled NdFeB based magnets. S. Adrwish. Materials Science, Engineering. 2013; The scrap magnets were turned into a powder using the HD process. …

The rapid cooling of the strip flakes suppresses the growth of soft α-Fe branch crystal grains. The thickness of the strip flakes was about 0.25–0.35 mm. Hydrogen decrepitation (HD), which uses the expansion of hydrogen to break up the flakes, was followed by milling in a jet mill (JM). The particles were then accelerated to supersonic ...

Jul 1, 2002 · The effective diffusivity of hydrogen in NdFeB magnets is reduced with Co and Ga additions and as a result of the texture induced in the microstructure via die-upsetting process. In addition to the results shown in Fig. 8 , the thermal desorption behaviour related to the hydrogenation of a die-upset MQU-G magnet is different for the two ... For the second type, three popular techniques, hydrogen decrepitation (HD), HDDR, and MS are applied to produce magnetic powders with the waste magnets. Note that the resultant powders prepared from the three techniques are single crystal powders, textured polycrystalline powders, and random aligned polycrystalline powders, respectively. ...

In this paper we describe and discuss the use of hydrogen in the processing ofNdFeB-type magnets. The roles of hydrogen in the hydrogen decrepitation (HD) and …calcium [12] and hydrogen decrepitation [1,13-19]. Many of these are under current development. Hydrogen decrepitation (HD) is based on the selective synthesis of neodymium hydrides though the reaction of hydrogen gas with neodymium located in the Nd-Fe-B magnet. HD process was originally designed and patented by Harris et al. …Sep 14, 2000 · This way of powdering known as hydrogen decrepitation (HD) is a well-established stage of manufacturing technologies of sintered [2], [3] and bonded [4] Nd–Fe–B magnets. The interstitial hydrogen in the ferromagnetic Nd 2 Fe 14 B phase reduces significantly its anisotropy field H A. That is why desorption of hydrogen is necessary in order ... For the second type, three popular techniques, hydrogen decrepitation (HD), HDDR, and MS are applied to produce magnetic powders with the waste magnets. Note that the resultant powders prepared from the three techniques are single crystal powders, textured polycrystalline powders, and random aligned polycrystalline powders, respectively. ...

2.1. Introduction of this section. HDDR treatment is used to obtain Nd-Fe-B magnet powders with good magnetic anisotropy and high coercivity [6,8,19].Therefore, HDDR treatment has been used to produce anisotropic bonded magnets for high-performance motors in automobiles and electronic devices [20,21].In typical HDDR …

Over the last ten years several groups have been carrying out research into metal injection moulding (MIM) of neodymium-iron-boron (NdFeB) powders to produce isotropic or …

Various efforts have been made in the past for direct recycling of spent NdFeB magnet using hydrogen decrepitation followed by resintering method (Zakotnik et al., 2009; Herraiz et al., 2016). In ...Jan 1, 2006 · In this paper it is demonstrated that hydrogen could play a vital role in this process. Fully dense, sintered NdFeB-type magnets have been subjected to the hydrogen decrepitation (HD) process. The resultant powder has been subsequently processed in one of two ways in order to produce permanent magnets. Jul 1, 2019 · Recycling of scrap sintered Nd–Fe–B magnets as anisotropic bonded magnets via hydrogen decrepitation process. The scrap sintered Nd–Fe–B magnets were recycled as the raw materials for bonded magnets using the hydrogen decrepitation (HD) process. The HD powders have the lowest oxygen and hydrogen content by…. Jan 1, 2022 · The SC alloy is converted into a fine powder by hydrogen decrepitation and then jet-milling (JM) to produce a fine powder consisting almost entirely of single crystal particles of the Nd 2 Fe 14 B phase. This powder is then filled into fills molds and pressed while a magnetic field is applied to orient the individual particles. The compacted ... room temperature in a custom-made gauge glass reactor, and the hydrogen decrepitation process was video-monitored in situ with a single frame camera at 0.1 frames per second (fps).

Various efforts have been made in the past for direct recycling of spent NdFeB magnet using hydrogen decrepitation followed by resintering method (Zakotnik et al., 2009; Herraiz et al., 2016). In ...Michihide Nakamura, Masashi Matsuura, Nobuki Tezuka, Satoshi Sugimoto, Yasuhiro Une, Hirokazu Kubo, Masato Sagawa; Preparation of ultrafine jet-milled powders for Nd-Fe-B sintered magnets using hydrogenation–disproportionation–desorption–recombination and hydrogen …A combination of hydrogen decrepitation (HD) and jet milling (JM) has been used to produce powder for the processing of permanent magnets. The procedure has proved to be very successful for both Nd-Fe-B (Neomax) alloys and the ND-Dy-Fe-Nb-B high coercivity alloys. The magnets produced by the HD/JM process showed excellent coercivities when …The reactions and phase changes occurring during sintering of NdFeB permanent magnet alloys were studied by differential thermal analysis and scanning electron microscopy. The powders were produced by hydrogen decrepitation and on heating, hydrogen evolution occurred in two stages: firstly from the matrix phase (∼170 °C) and …A study of the processing and characterisation of sintered NdFeB magnets made from recycled feed stock was undertaken. Initially the hydrogen decrepitated (HD) powder was investigated using two different milling techniques ball milling and burr milling. The powders were analysed with optical microscopy, with the aid of a magnetic field.The Hydrogen Decrepitation process (HD) is used as an alternative method of powder preparation in the manufacturing process of sintered Nd Fe B magnets [ 1]. During the HD process a NdFeB-type material is hydrogenated by gaseous hydrogen at atmospheric (or elevated) pressure at room (or elevated) temperature.

NdFeB-based alloys and magnets also react readily with hydrogen, and this has been exploited by the hydrogen decrepitation (HD) process [4]. During HD the material is exposed to hydrogen (at room temperature) and initially the Nd-rich phase absorbs hydrogen (represented approximately by Eq.Hydrogen absorption and desorption characteristics for high coercivity NdDyFeCoNbCuB sintered bulk magnets were studied, by differential scanning calorimetry (DSC) measurement and hydrogenation kinetics measurement. The DSC measurements showed that hydrogenation of Nd-rich phase occurred in the temperature range of …

NdFeB sintered magnet material has been developed. The magnets are produced by powder metallurgy route involving hydrogen decrepitation technique for making fine powder. After melting and casting ...magnets from electrical and electronic equipment. These materials are then processed using hydrogen decrepitation to transform the NdFeB magnets into a hydrogenated powder. This powder can then be extracted mechanically from the obsolete devices, and can then be processed further to produce either sintered or bonded rare earth magnets. hydrogen uptake (2043.76 μmol∙g-1) was received for conditions 4 bar and room temperature, while the lowest (925.27 μmol∙g -1 ) for 1 bar at 400 0 C (Figure 4). At room temperature (29Electrolytic Hydrogen Decrepitation of NdFeB Magnets Under Ambient Conditions. V. Kaplan, Y. Feldman, …, I. Lubomirsky. Journal of Sustainable Metallurgy • Volume 8, Issue 3 • 1 September 2022. 1 citation; Scopus record. Article. 2D Pb-Halide Perovskites Can Self-Heal Photodamage Better than 3D Ones.Introduction. In the fields of sintered magnets, the hydrogen decrepitation (HD) technique has been widely used. The as-melted NdFeB bulk material becomes brittle after HD and decrepitates into powders, as a result of the large volume expansion of the lattice of both the Nd 2 Fe 14 B matrix and the intergranular Nd-rich phase [1]. Hydrogen …The application of hydrogen decrepitation (HD) as a process for recycling Nd-Fe-B sintered magnets was reported in [ 6 ], in which the essential role of hydrogen in the recycling process was demonstrated. The obtained magnetic properties of the recycled magnet were ( BH) max = 290 kJ/m 3 (±5 kJ/m 3 ), Br = 1240 mT (±50 mT) and jHc = …magnets. The thermal and mechanical impact of the hydrogen decrepitation process was assessed during hydrogen processing. For all forms of sintered NdFeB scrap the surface condition of the magnets is important as oxidation has been shown to inhibit the onset of the hydrogen decrepitation process. In this

An effective and complete processing route for the recycling of sintered Nd-Fe-B scrap magnets was proposed. Sintered Nd-Fe-B magnets were subjected to the Hydrogen Decrepitation (HD) process at various temperatures in the range of 50–300 °C, at two different pressures, 50 kPa and 200 kPa, followed by vacuum dehydrogenation in …

Hydrogen decrepitation of Nd-Fe-B type magnet alloys is a two stage process. Firstly, the hydrogen reacts with the Nd-rich phase at or close to room …

This work could have implications with regard to the mechanism of hydrogen decrepitation of sintered NdFeB magnets during the well-established recycling process described by Walton et al. [19] and [20]. During this process, scrap sintered NdFeB magnets are damaged in air to expose a clean surface suitable for hydrogen decrepitation. …Dec 20, 2020 · Extraction of NdFeB from rotors using hydrogen. Seven semi-embedded rotors and non-embedded rotors were processed separately in two experiments. All the magnets in individual slots were scored in concentric circles using an angle grinder to provide a fresh surface for the hydrogen, as shown in Fig. 3, 15–30 min before being loaded into the ... The rapid cooling of the strip flakes suppresses the growth of soft α-Fe branch crystal grains. The thickness of the strip flakes was about 0.25–0.35 mm. Hydrogen decrepitation (HD), which uses the expansion of hydrogen to break up the flakes, was followed by milling in a jet mill (JM). The particles were then accelerated to supersonic ...International Journal of Hydrogen Energy Volume 22, Issues 2–3 , February–March 1997 , Pages 241-244 Technical and operating features of interaction between hydrogens and alloys and magnets on the basis of rare earth metalsUnfortunately, the contained NdFeB magnets break up into a friable magnetized powder which then sticks to the ferrous scrap and the shredder itself. A production-scale plant in Germany planned to go onstream in 2024 and a pilot plant launched a few months ago in the UK, expected to graduate to production-scale in 2023, …NdFeB ingot exposed to hydrogen atmosphere due to the changes of hydride lattice parameters cracks. The process called HDDR (Hydrogenation - Decrepitation -D...Electrolytic Hydrogen Decrepitation of NdFeB Magnets Under Ambient Conditions. V. Kaplan, Y. Feldman, …, I. Lubomirsky. Journal of Sustainable Metallurgy • Volume 8, Issue 3 • 1 September 2022. 1 citation; Scopus record. Article. 2D Pb-Halide Perovskites Can Self-Heal Photodamage Better than 3D Ones.The scrap sintered Nd–Fe–B magnets were recycled as the raw materials for bonded magnets using the hydrogen decrepitation (HD) process. The HD powders have the lowest oxygen and hydrogen content by hydrogenation at 150 °C with 1 bar H2 pressure and dehydrogenation at 600 °C. The powders with the largest particle size (>380 μm) …The intrinsic magnetic coercivity (H ci) of Nd‐Fe‐B‐based permanent magnet material is profoundly affected by hydrogen absorbed during the hydrogen decrepitation (HD) process for producing anisotropic powders from bulk anisotropic hot‐deformed MAGNEQUENCH (MQ) magnets.Hydrogen (H) content and x‐ray diffraction …

magnets. The thermal and mechanical impact of the hydrogen decrepitation process was assessed during hydrogen processing. For all forms of sintered NdFeB scrap the surface condition of the magnets is important as oxidation has been shown to inhibit the onset of the hydrogen decrepitation process. In thisAbstract. In this paper we describe and discuss the use of hydrogen in the processing ofNdFeB-type magnets. The roles of hydrogen in the hydrogen decrepitation (HD) and hydrogenation, disproportionation, desorption and recombination (HDDR) processes are considered together with the characteristics of the magnets produced by …Sep 7, 2022 · We report investigations on the processing by Spark Plasma Sintering (SPS) of RE2Fe14B (RE = Nd, Pr…) powders obtained by hydrogen decrepitation of decommissioned magnets and the magnetic properties of the consolidated magnets. First experiments have been carried out with a commercial powder to make clear the mechanisms occurring during the powder densification. The magnetic properties of ... Instagram:https://instagram. sks drdnaki remember times when i aindc league of super pets151678 Another example of the coercivity recovery in crushed NdFeB-type sintered magnets was made by adding the DyF 3 salt [8]. Furthermore, the production of anisotropic RE–Fe–B–Cu powders have also been produced by hydrogen decrepitation of hot deformed ingots [9] followed by degassing. webstorederketopercent27s voice Hydrogen absorption/adsorption properties of high coercivity NdDyFeCoNbCuB sintered magnets were determined. Hydrogenation kinetics were analyzed using both differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Hydrogenation of the Nd-rich intergranular phase results in a rather broad and large peak …Nov 15, 1988 · A combination of hydrogen decrepitation (HD) and jet milling (JM) has been used to produce powder for the processing of permanent magnets. The procedure has proved to be very successful for both NdFeB (Neomax) alloys and the NdDyFeNbB high coercivity alloys. call opercent27reillypercent27s automotive These magnets were identical in every way apart from the orientation of the Nd 2 Fe 14 B grains. Each magnet was exposed to hydrogen and the decrepitation behaviour observed. The anisotropic samples were found to decrepitate exclusively from the ends of the rods whereas the isotropic magnets were attacked by the hydrogen at all …The obtained strips were pulverized and further milled into ∼5 μm powder using hydrogen decrepitation and jet milling, respectively. These powders were pressed in a magnetic field of 1.8 T under a pressure of 8.0 MPa. Afterward, the green compacts were sintered at 1070°C for 3 h in vacuum, cooled by Ar quenching. ... NdFeB sintered …